
Dynamic Force Quadratures 
Intermodulation  Products  offers  a  new  way  to 
study  tip-surface  interactions  in  dynamic  Atomic 
Force  Microscopy  (AFM).  The  amplitude 
dependence of conservative and dissipative forces 
felt  by  an  oscillating  cantilever  reveals  both  the 
elastic and viscous nature of the material surface. 

Quasi-static force curves

The tip-surface force in AFM is usually considered 
to be in quasi-static equilibrium with the cantilever 
force,  and  proportional  to  cantilever  deflection 
FTS=Fcant=k d .  A  measurement  of  cantilever 

deflection as the probe is moved toward and away 
from  the  surface,  is  transposed  (under  many 
assumptions) to the tip-surface force as a function 
of  the  tip  position  F (z) .  This  'force  curve'  is 
fitted to models from contact mechanics to extract 
the elastic modulus of the surface. 

The  quasi-static  approach  to  force  measurement 
breaks  down  as  the  cantilever  begins  to  move 
faster, where inertial and viscous forces must also 
be included in the full description of the cantilever 
dynamics.  Furthermore,   the  quasi-static  method 
can not reveal anything about the viscous response 
of the surface, as viscous forces are proportional to 
velocity. 

Dynamic force measurement

Viscousity  can  be  revealed  through  a  dynamic 
measurement  of  force,  where  the  cantilever 
deflection is analyzed as a function of time d (t ) . 
Actually, it is much more advantageous to measure 
the cantilever deflection as a function of frequency. 
Multifrequency  lock-in  measurement  greatly 
improves the signal-to-noise ratio. We measure the 
quadrature response  d̂ (ω)=d I (ω)+i d Q(ω)  or 
the  Fourier  cosine  and  sine  components  of  the 
cantilever deflection at each frequency ω .  This 
response is  easily  convert  to  d (t ) ,  as  the time 
and frequency domains are related to one-another 

via the Fourier transform and its inverse.

Analysis of the tip-surface force is much easier in 
the frequency domain, where force and deflection 
have a simple linear relation 1,

d̂ (ω)=χ̂ (ω)( F̂TS+ F̂ drive) (1)

Here  χ̂(ω)  is  the  cantilever's  linear  response 
function,  which  is  determined  by  a  non-invasive 
calibration  procedure.  Solving  Eq.  (1)  for  the 
Fourier coefficients of the tip-surface force we find,

F̂TS=χ̂−1(ω)( d̂ (ω)−d̂ free (ω)) (2)

where  the  drive  force  F̂ drive=
̂χ−1 d̂ free (ω)  is 

given  by  the  measured  free  motion,  far  from  a 
surface where  FTS=0 .

Measurement  in  the  frequency  domain  is 
particularly advantageous close to a high quality-
factor  resonance.  On  resonance  the  response 
function gives a factor  Q  larger deflection, than 
that  due  to  a  static  force  ∣χ̂(ω0)/χ (0)∣=Q . 
Because  dynamic  force  measurement  is  so 
sensitive near resonance, one is essentially limited 
to measuring frequency components of the force 
in a narrow frequency band near resonance. 

Dynamic force curves

Intermodulation Products has developed a method 
to  analyze  and  visualize  tip-surface  force  in  this 
narrow frequency band near resonance. From the 
multifrequency  measurement  of  the  tip-surface 
force near resonance, we obtain two dynamic force 
curves showing the Fourier coefficients of the tip-
surface force at  ω0 ,   as a function of oscillation 
amplitude.   These  Fourier  coefficients  are 
transformed  to  a  rotated  frame,  such  that  one 
component  is  in-phase  with  the  motion  of  the 
cantilever, and the other quadrature to the motion, 
or in phase with the velocity. 
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d (t )=A cos(ω0 t )                   

F I (A)=
1
T
∫0

T
F TS (d , ḋ )cos(ω0 t)

F Q(A)= 1
T∫0

T
FTS (d , ḋ )sin (ω0 t)

(3)

in the frequency domain we write,

d̂=A+i0              
F̂TS (A)=F I (A)+i F Q(A)

(4)

Intermodulation near a high-Q resonance offers a 
rapid way to measure the amplitude dependence 
of  the force quadratures2.  The measured spectra 
can  be  directly  transformed  into  the  two  force 
quadrature curves as demonstrated in fig. 1.  We 
can think  of  F I (A)  and  FQ(A)  as  the 'force 
curves' of dynamic AFM. 

The  dynamic  force  curves  tells  us  a  great  deal 
about the tip-surface interaction. Unlike the quasi-
static  force  curve  F (z)  they do  no tell  us  the 
force  at  a  specific  location  z ,  but  rather  the 
integrated force on a single oscillation cycle with 
amplitude  A .  The  in-phase  force  F I  is 
conservative, meaning that it describes an elastic 
response of the surface. When F I  is positive the 
elastic part of the tip-surface force is dominantly 

attractive  during  the  single  oscillation  cycle. 
Similarly, negative F I  means that the elastic force 
is dominantly repulsive. The dissipative quadrature 
FQ  tells  us  about  the  viscous  response  of  the 

surface. In fig. 1 we see that  FQ  has significant 
magnitude,  even  when  F I  is  positive.  The 
attractive forces pull the surface upward, and due 
surface  viscosity,  energy  in  the  cantilever  is 
dissipated by the oscillating surface. 

The  force  quadratures  are  measured  for  both 
increasing  and  decreasing  amplitude  during  the 
full modulation cycle. With soft materials one often 
sees  hysteresis  in  the  dynamic  force  curves  as 
shown in fig. 1. The surface is lifted by attrictive 
forces and when the contact is broken, the surface 
does not fully relax before the next oscillation lifts 
the  sufrace  again.  Repeated  taps  cause  a  lifted 
time-average surface position. 
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Figure 1:  The spectrum of free motion and engaged motion are combined with the calibrated transfer function as in  
Eq.(2) to get the spectrum of the tip surface force. From the motion spectrum and force spectrum we extract the  
slowly varying envelopes, or time-domain modulation functions, by simple down-shifting and inverse Fourier transform.  
Thus, for each fast oscillation of the cantilever, we can follow the amplitude and phase of both motion and force.  

Knowing the phase of both envelope functions, we can plot the force which is in phase with the motion F I (A) , and 

its quadrature force FQ(A) , as functions of the amplitude of oscillation A .
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